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SUMMARY 
The goal of this project was to ascertain the capabilities of the Virginia Longitudinal Data 
System (VLDS) to support the integration of data to generate a distinct count of children birth 
to five served by one or more early childhood programs and/or services, as a foundational 
metric for a range of 
future early childhood 
policy and programmatic 
analyses and uses. 
 
The established project 
objectives to achieve this 
goal were to: 
 
1) produce a data fitness 

analysis of assessed 
data sets 

2) produce analyses and 
presentation of basic 
demographic 
breakdowns over time 
for multiple 
combinations of the selected early childhood service data sets, and 

3) produce an initial composite index, for demonstration purposes, using the produced 
distinct counts. 

 
All three objectives were achieved and, as Figure 1 demonstrates, successful integration and 
analysis of data relevant to the target population is achievable. In addition, a custom algorithm 
for the R programming language was developed to facilitate quick deduplication of these 
datasets by others in the future (see Appendix B). 

Figure 1 An Example of Unique-Count Cross-Dataset Linkage Possible using the VLDS 



 
However, significant hurdles remain to successfully utilize the VLDS as a basis for a future 
Virginia Early Childhood Integrated Data System (ECIDS). The two primary hurdles are 1) that 
the VLDS does not currently collect all of the needed data for the target population (this was 
already well known going into the study), and 2) the time and effort required to successfully 
query, process, and re-query the data system, as is necessary in any investigative process, be it 
for policy or research purposes, is significantly onerous. While the people administering the 
system are knowledgeable and competent, the time and steps necessary to determine which 
data is required as well as the time it takes for a query to make it through a queue with a 
continuous backlog, suggest an under-resourcing of the technical infrastructure necessary to 
support its increased use as a system to support early childhood policy and program analyses. 

BACKGROUND 
To understand how policies, services, and supports work for which children at what time, 
policymakers need comprehensive data about the accessibility, quality, and effectiveness of 
services. The potential value of integrated administrative data systems (IDS) to provide this 
crucial policy-relevant data is increasing (Fantuzzo & Culhane, 2016). This 
is particularly relevant for the establishment and continuous evaluation of public programs 
focused on young children ages 0-5, a group for whom services are historically fragmented and 
disconnected from systems serving school-aged children, and siloed among health, human 
services, and education agencies. 
 
Accordingly, the Virginia Early Childhood Foundation (VECF) is investigating the potential for 
establishing an Early Childhood Integrated Data System (ECIDS) to collect, store, integrate, and 
maintain data from early childhood programs across multiple agencies within the state. The 
combined information from a Virginia ECIDS can be used to inform service delivery, public 
policy, and future investments to ensure all children have access to the supports they need to 
succeed in school and in life. 
 
In developing a Virginia ECIDS, a first necessary step is to ascertain what aspects of an ECIDS 
may be provided by already established and supported data systems. The goal of this study is 
to determine the current ability of the Virginia Longitudinal Data system (VLDS) to support 
the generation of a distinct count of children, birth to five, served by one or more early 
childhood programs and/or services, as a foundational metric for a range of future early 
childhood policy and programmatic analyses and uses. 
 
Funded by the 2009 Statewide Longitudinal Data Systems Grant Program of the United States 
Department of Education, the Virginia Longitudinal Data system (VLDS) was established to 
provide a cost-effective mechanism for extracting, shaping and analyzing partner agency data 
in an environment that ensures the highest levels of privacy. State agencies currently 
participating in the VLDS include the Virginia Department of Education (VDOE), the State 
Council of Higher Education for Virginia (SCHEV), the Virginia Employment Commission (VEC), 
the Virginia Department of Social Services (VDSS), the Virginia Community College System 



(VCCS), the Virginia Department for Aging and Rehabilitative Services (DARS), and Virginia 
Department of Health Professions (DHP). 
 

PROJECT TASKS TO COMPLETE OBJECTIVES 
The tasks completed to achieve the project objectives were: 

1) Work with VECF and partners to derive most desired/useful counts to be provided 
2) Work with VLDS contributors to determine most appropriate data sets 

a) Understand data processing procedures, and attendant issues, used by data providers to create the unique 
demographic log required by the VLDS 

b) Select the optimal combination of data sets balancing potentially desired/useful counts with an understanding 
of the data quality and fitness 

c) Profile the fitness (quality, structure, metadata, duplication, etc) of the data sets as provided by the VLDS to 
provide the necessary demographics and other requested measures for analysis 

d) Secure access to data provider records and conduct deterministic and probabilistic de-identification analyses 
to establish rough error estimates for each demographic log to be used in the project 

3) Query Construction - Derive and verify queries for selecting distinct counts 
a) Distinct counts by race, gender, age, economic status, and location for each selected EC services over 

multiple time periods (e.g. months, years) 
b) Distinct counts for each combination of the selected EC services over multiple time periods which may 

encompass difference subsets of both children and programs 
c) Execute queries and verify counts produced vs counts expected given previous analysis of rough 

errors existing in the provided demographic logs 
 

Initial Dataset Selection and Filtering 

Initial dataset and field selection were guided by the objective of finding the best available 
demographic information to specify who, what, when, and where of service receipt across 
agencies. The following table shows the datasets and specific demographic fields under 
consideration with Information on children 0-5 years of age. 

 



 
Figure 2 Combining and Deduplicating Across Sources 

Datasets and field under consideration for demographic information 

 

SPECIFIED DATA FILTERS 
The datasets were queried using the following filters to narrow the selections to the target 
population. 

• DOE|Unique Students Listing|School Year greater than 2012 
• And DOE|Unique Students Listing|Grade Code in list JK,KA,KG,KP,PK,T1,TT,UG 
• And DOE|VPI+|Birth Year greater than 2007 
• And OCS|OCS Services By Year|Program Year greater than 2012 
• And DSS|DSS Customers By Year|Calender Year number greater than 2012 

 

ISSUES EXPERIENCED IN ACQUIRING DATASETS 
• Working with the VLDS interface for data selection and extraction is very onerous. 
• Although the datasets are previously linked, it is not possible to limit a search by criteria on 

one of the datasets only. Each dataset must have criteria set. However, each dataset does 
not have the same available criteria. 

• Additionally, the system only allows for viewing of sample data responses from the first 
dataset with criteria set. After setting additional criteria on the additional datasets, the 
system responds that No Records are found. This is not actually the case and you do not 
know how many records will result until the system actually returns a data package in a day 
or two. 

• To get to a useable set of data tables to begin to answer a research question, a guessing 
game has to be pursued with many days wait in-between guesses. 

• Additionally, if the query has been too broadly defined (too many records have been 
requested), an error will be returned and the researcher will need to begin attempting to 
reduce the size of the query, which is a guessing game in and of itself. 



COMPLETED PROJECT OBJECTIVES 

Produce data fitness analysis of assessed data sets 

We have determined that while there are some issues in demographic quality over time in the 
VDOE, VDSS and OCS data, the issues are small and would not detract from the ability to link 
the data and have the linked data be used to analyze demographic patterns of children over 
time. Also, because much of the data that will be coming into the system for kids 0-5 is going to 
be newly generated data, it is expected that the quality of these collections will be generally 
high, certainly no lower. 
 
An example of the data profiling conducted to assess fitness for use is shown here for the 
dataset “DSS Customers by Year” provided by VDSS to the VLDS. Additional data profiling 
results can be seen in Appendix A. 
 

A general note of DSS dataset structures encountered 

For those working with these datasets in the future, it is important to note that DSS 
“Individual by Year” datasets are actually “Individual by Year by Location”. 
For example, SNAP and TANF Customer Records by Year are actually Customer Records by Year 
AND by "Location", so multiple records per customer occur if a customer received benefits in 
more than one FIPS code or zip code in a calendar year. As a single record is needed per 
customer per year for linkage purposes, additional columns must be created to account for all 
possible locations. The number of columns added is based on the customer with the highest 
number of locations in a single year. In this case it is six, but the code automatically determines 
the number. An example of the resulting location record individuals can be seen below. 
 

DATASET PROFILE: DSS CUSTOMERS BY YEAR 

Dataset Preparation 

Provided datasets are often vastly different from each other in terms of both schema and 
structure. To prepare for data profiling, dataset fields are checked for spelling errors and 
converted to a standardized format. If the dataset does not provide records at the level of 
aggregation required (e.g. each row is unique for a person and year) then the dataset is 
restructured. 

Task: Preparation of Field/Column Names 

Field/Column names standardized. 

fields_original fields_prepared 
Unique ID unique_id 
Age Class Code age_class_code 



Age Group Code age_group_code 
Age Type Code age_type_code 
Calender Year number calendar_year_number 
Customer race is Black indicator customer_race_is_black_indicator 
Customer race is Asisan indicator customer_race_is_asisan_indicator  
Cust race is Hawaiian/Pacific Islander ind cust_race_is_hawaiian_pacific_islander_ind 
Cust race is Amer Indian/Alaska Native Ind cust_race_is_amer_indian_alaska_native_ind 
Customer race is White indicator customer_race_is_white_indicator 
Customer race is Other indicator customer_race_is_other_indicator 
Foster Care case Indicator foster_care_case_indicator 
Ethnicity Code ethnicity_code 
Gender Code gender_code 
Month of Birth month_of_birth 
SNAP Case Indicator snap_case_indicator 
TANF Case indicator tanf_case_indicator 
Year of Birth year_of_birth 

 

Task: Restructuring of Dataset to Required Level of Aggregation 

No restructuring was required for this dataset. 

Uniqueness 

The concept of data uniqueness can be generalized as the number of unique valid values that 
have been entered in a record field, or as a combination of record field values within a dataset. 
Uniqueness is not generally discussed in terms of data quality, but for the purposes of 
answering research questions, the variety and richness of the data is of paramount importance. 
Most notably, if a record field has very little value uniqueness (e.g. entries in the field ‘State’ for 
an analysis of housing within a county, which of course would be within a single state), then its 
utility would be quite low and can be conceptualized as having low quality in terms of the 
research question at hand. 

Test: Numerical Frequencies 

There were no numerical items in this dataset 



Test: Categorical Frequencies 

Assessing the breakdown of the frequency of categorical variables can be very informative 
when selecting appropriate fields for linkage and/or analysis. For example, as can be seen in 
Figure 2, when selecting a field to best serve as the “age” variable from this dataset it becomes 
instantly clear that ‘age_class_code’ and ‘age_type_code’ are not appropriate for this use as 
they only contain one (“1”) and two values (“1”, “2”), respectively. The field ‘age_group_code’, 
however, appears much more suitable as it is comprised of a distinct value for each year of age. 

  

Completeness 

The concept of data completeness can be generalized as the proportion of data provided versus 
the proportion of data required. Data that is missing may additionally be categorized as record 
fields not containing data, records not containing necessary fields, or datasets not containing 
the requisite records. The most common conceptualization of completeness is the first, record 
field not containing data. This conceptualization of data completeness can be thought of as the 
proportion of the data that has values to the proportion of data that ’should’ have values. That 
is, a set of data is complete with respect to a given purpose if the set contains all the relevant 
data for that purpose. 

Figure 3 Breakdown of Categorical Values per Data Field 



Test: Record Completeness (The Number of Records with Empty Values in a Field/Column) 

rows_with_empties 
0 

Test: Item Completeness (The Number Cells Missing Values in each Field/Column) 

item empties 
unique_id 0 
age_class_code 0 
age_group_code 0 
age_type_code 0 
calendar_year_number 
cust_race_is_amer_indian_alaska_native_ind 
cust_race_is_hawaiian_pacific_islander_ind 
customer_race_is_asisan_indicator 
customer_race_is_black_indicator 
customer_race_is_white_indicator 
customer_race_is_other_indicator 
ethnicity_code 
foster_care_case_indicator 
gender_code 
month_of_birth 
snap_case_indicator 
tanf_case_indicator 
year_of_birth 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

 

Valid Values 

The concept of value validity can be conceptualized as the percentage of elements whose 
attributes possess expected values. The actualization of this concept generally comes in the 
form of straight-forward domain constraint rules. 

Test: Count and Percentage of Invalid Values in each Field/Column 

From a quick analysis of the graphs below it can be seen that the demographic fields in this 
dataset are maintained at a very high level in terms of the validity of the values stored with a 
score of 100% for almost all. A small number of invalid values were detected, however, in the 
field ‘ethnicity’. This number represents approximately 6.8% of the values stored in that field. 
However, having 93% valid values is still relatively high and this field may still serve as a decent 
indicator of ethnicity. 



 
Figure 4 Count and Percentage of Individuals with Invalid Values 

dataset: DSS Customers by Year 

Longitudinal Consistency (Unexpected Changes in Demographics) 

Longitudinal Consistency refers to a check for inconsistency in the data when checked over 
time (longitudinally), to see if the same value is recorded for every new record when it should 
be (i.e. birthdate and other demographics). Causes of longitudinal inconsistency are varied, but 
a common source of inconsistency comes from situations where locally derived information is 
provided with no associated master list or file. An exhaustive ‘master list’ of individuals 
receiving a public service are, in fact, quite rare. Many times, demographics are recorded in 
multiple records about the same individual, sometimes in the same time period. In these cases, 
truth must be derived from the aggregation of multiple observations. 

Test: Count and Percentage of Individuals with Multiple Values per Demographic Item 

While a small number of fluctuating demographic values are detected in this dataset, the 
respective percentages are fairly low and it is expected that they are manageable using 
standard deduplication approaches. 
 
 
 

 
 
 
 

Figure 5 Count and Percentage of Individuals with Multiple Values per Demographic Item 
dataset: DSS Customers by Year 



Produce analyses and presentation of basic demographic breakdowns over time 
for all combinations of the select EC service data sets. 

For the data sources we were able to link and pull (VDOE student record, VDSS services by year, 
OCS services), restructuring the data and the creation of deduplicated demographic 
breakdowns over time was straight-forward, presenting only issues normally experienced in 
such exercises. There isn’t much data yet for some (OCS), but it’s clear that it’s not only 
possible to deduplicate and link the data sets to create unduplicated counts, but that such 
linkage could prove quite useful.  
 
For example, we can now produce cross-tabulations of distinct counts across multiple services 
over time. 

 
Figure 6 Excerpt from Distinct Count Cross-Tabulation, Service by Race/Ethnicity by Year 

datasets: SNAP, TANF, FOSTER, OCS 

 
  
  



As well as distinct count graphs. 
 

 
Figure 7 Individuals receiving both VDSS SNAP and OCS Services by Race and Ethnicity 

 
And we can now visualize counts across geographies. 
 

  
  

 

 

 

 

 

 

Produce an initial composite index, for demonstration purposes, using the 
produced distinct counts. 

In terms of demonstrating how such deduplication and linkage may prove useful, we created an 
initial scaled composite index combining nutritional and behavioral assistance rates per county 
in Virginia. The code for producing this index can be found in Appendix C. 
 

Figure 8 Count of Individuals Receiving SNAP and Part B Benefits 2015 
datasets: DSS Customers by Year, DOE Student Records 



 
Figure 9 Example of Composite Index Constructed Using VLDS Distinct Count Linked Data 

 
 



APPENDIX A – DATASET PROFILE SAMPLES







































APPENDIX B – APPLICATION OF DEDUPLICATION ALGORITHM FOR DOE STUDENT 

RECORD DEMOGRAPHICS 

Ingest DOE Student Record Demographics 

LOAD LIBRARIES AND FUNCTIONS 
library(data.table) 
library(dataplumbr) 
library(here) 
library(inspectdf) 
library(maditr) 

DOE Student Record Demographics 

LOAD DATA FILE 
doe_student_records <- fread(here("data/original/q5/DOE/Student Records.csv")
, colClasses = "character") 

STANDARDIZE COLUMN NAMES 
colnames(doe_student_records) <- name.standard_col_names(colnames(doe_student
_records)) 

CHECK IF MORE THAN ONE RECORD PER UNIQUE_ID AND CALENDAR_YEAR 
multiples <- nrow(doe_student_records[, .N,.(unique_id, school_year)][N > 1]) 
multiples 

## [1] 2810 

APPLY DEDUPLICATION ALGORITHM TO GET DEMOGRAPHICS BY YEAR 
doe_student_dmgs <- doe_student_records[, .(birth_month, birth_year, race_typ
e, ethnic_flag, prek_funding_code),.(unique_id, school_year)] 
 
set.dedup_choice <- function(df) { 
    dt <- data.table::setDT(df) 
    for (j in colnames(dt)) { 
        data.table::set(dt, j = j, value = dt[get(j) != "", .N, j][order(-N)]
[, ..j][1]) 
    } 
    dt[1] 
} 
 
set.dedup_choice_by_key <- function(df, key = "uid") { 
    if (exists("out_dt") == TRUE) rm(out_dt, envir = globalenv()) 
 
    dt <- data.table::setDT(df) 
    unique_keys <- unique(dt[, get(key)]) 



    key_cnt <- length(unique_keys) 
    pb <- progress::progress_bar$new(format = "[:bar] :current/:total :percen
t eta: :eta", total = key_cnt) 
 
    for (k in unique_keys) { 
        pb$tick() 
        g <- dt[get(key)==k] 
        r <- set.dedup_choice(g) 
        if (exists("out_dt") == FALSE) out_dt <- r else out_dt <- rbindlist(l
ist(out_dt, r)) 
    } 
 
    out_dt 
} 
 
doe_student_dmgs_dedup <- set.dedup_choice_by_key(doe_student_dmgs, "unique_i
d") 
 
# verify only one code per id per year 
nrow(doe_student_dmgs_dedup[, .N, .(unique_id)][N > 1]) 

## [1] 0 

WRITE TO CSV 
fwrite(doe_student_dmgs_dedup, here("data/working/DOE/doe_student_records_by_
year_dmgs_prek.csv")) 



APPENDIX C – CODE TO GENERATE COMPOSITE INDEX 

LOAD	LIBRARIES	
library(data.table)   

library(dataplumbr)   

library(tidycensus)   

library(sf)   

library(ggplot2)   

library(here)   

library(knitr)   

library(kableExtra) 

DSS	RECORDS	
Load DSS records and standardize column names 

dss_customers_by_year <- fread(here("data/original/q4/DSS/DSS Customers By Ye
ar.csv"), colClasses = "character")   

colnames(dss_customers_by_year) <- standard_col_names(colnames(dss_customers_
by_year)) 

fix a misspelling for future joining 

colnames(dss_customers_by_year)[colnames(dss_customers_by_year) == "calender_
year_number"] <- "calendar_year_number" 

subset to just the data columns needed 

dss_customers_by_year_sub <-    

  dss_customers_by_year[, .(unique_id,   

                            calendar_year_number,   

                            snap_case_indicator,   

                            tanf_case_indicator,   

                            foster_care_case_indicator)]   

# print table   

kable(dss_customers_by_year[1:4]) %>% kable_styling() %>% scroll_box(width = 
"910px") 



OCS	RECORDS	
Load OCS records and standardize column names 

ocs_services_by_year <- fread(here("data/original/q4/OCS/OCS Services By Year
.csv"), colClasses = "character") 

## Warning in fread(here("data/original/q4/OCS/OCS Services By Year.csv"), :   

## Discarded single-line footer: <<ZKAUQQQ,D,1644259,2,>> 

colnames(ocs_services_by_year) <- standard_col_names(colnames(ocs_services_by
_year)) 

Group the OCS service records by year to create a single record per customer per year 

ocs_customers_by_year <- ocs_services_by_year[, .(ocs_service_entries = .N), 
.(unique_id, program_year)]   

# print table   

kable(ocs_customers_by_year[1:4]) %>% kable_styling() %>% scroll_box(width = 
"910px") 

unique_id program_year ocs_service_entries 

MZ4CQQQ 2016 2 

2942AQQ 2016 2 

K929QQQ 2016 1 

GHCHQQQ 2016 2 

Join	the	DSS	and	OCS	records	
colnames(ocs_customers_by_year)[colnames(ocs_customers_by_year) == "program_y
ear"] <- "calendar_year_number"   

dss_ocs_cust_by_year <- merge(dss_customers_by_year_sub, ocs_customers_by_yea
r, by = c("unique_id", "calendar_year_number"), all.x = TRUE) 

add a service indicator variable for later use 



dss_ocs_cust_by_year[!is.na(ocs_service_entries), ocs_indicator := "Y"]   

dss_ocs_cust_by_year[is.na(ocs_service_entries), ocs_indicator := "N"] 

SNAP	RECORDS	
Load SNAP records and standardize column names 

snap_cust_by_loc_year <- fread(here("data/original/q4/DSS/DSS SNAP Customers 
by Year.csv"), colClasses = "character")   

colnames(snap_cust_by_loc_year) <- standard_col_names(colnames(snap_cust_by_l
oc_year)) 

SNAP	records	are	actually	Customer	by	Year	by	“Location”,	
so	multiple	records	per	customer	
if they received benefits in more than one fips code or zip code. As a single record is needed per 
customer, additional columns must be created to account for all possible locations. The number of 
columns added is based on the customer with the highest number of locations in a single year. In 
this case it is six, but the code automatically determines the number. 

# each county fips code gets it's own column, each zip code gets its own colu
mn   

snap_cust_by_loc_year[, county_fips_code_no := paste("county_fips_code", seq_
len(.N), sep="_"), by=c("unique_id", "study_group_id", "calendar_year_number"
)]   

snap_cust_by_loc_year[, zip_code_no := paste("zip_code", seq_len(.N), sep="_"
), by=c("unique_id", "study_group_id", "calendar_year_number")]   

fips <- dcast(snap_cust_by_loc_year, unique_id + study_group_id + calendar_ye
ar_number ~ county_fips_code_no, value.var=c("county_fips_code"))   

zips <- dcast(snap_cust_by_loc_year, unique_id + study_group_id + calendar_ye
ar_number ~ zip_code_no, value.var=c("zip_code"))   

snap_cust_by_year <- merge(fips, zips, by=c("unique_id", "study_group_id", "c
alendar_year_number"))   

# print table   

kable(snap_cust_by_year[!is.na(county_fips_code_5)][order(-county_fips_code_6
)][1:25]) %>% kable_styling() %>% scroll_box(width = "100%") 

Join	the	DSS,	OCS	and	SNAP	records	
dss_ocs_snap_cust_by_year <- merge(dss_ocs_cust_by_year, snap_cust_by_year, b
y = c("unique_id", "calendar_year_number"), all.x = TRUE) 



dss_ocs_snap_cust_by_year <- dss_ocs_snap_cust_by_year[!is.na(county_fips_cod
e_1)] 

ocs_snap_cnt_fips_by_year <- dss_ocs_snap_cust_by_year[, .N, c("county_fips_c
ode_1", "calendar_year_number")]   

# print table   

kable(ocs_snap_cnt_fips_by_year[1:4]) %>% kable_styling() %>% scroll_box(widt
h = "910px") 

Get	population	by	county	by	year	for	Virginia	
va_pop_co_2013 <- data.table::setDT(tidycensus::get_acs(geography = "county", 
variables = "B01001_001", state = "VA", year = 2013))   

va_pop_co_2013[, year := "2013"]   

colnames(va_pop_co_2013)[colnames(va_pop_co_2013) == 'estimate'] <- 'estimate
_2013'   

va_pop_co_2013 <- va_pop_co_2013[, .(GEOID, estimate_2013, year)] 

va_pop_co_2014 <- data.table::setDT(tidycensus::get_acs(geography = "county", 
variables = "B01001_001", state = "VA", year = 2014)) 
va_pop_co_2014[, year := "2014"] 
colnames(va_pop_co_2014)[colnames(va_pop_co_2014) == 'estimate'] <- 'estimate
_2014' 
va_pop_co_2014 <- va_pop_co_2014[, .(GEOID, estimate_2014, year)] 
va_pop_co_2015 <- data.table::setDT(tidycensus::get_acs(geography = "county", 
variables = "B01001_001", state = "VA", year = 2015)) 
va_pop_co_2015[, year := "2015"] 
colnames(va_pop_co_2015)[colnames(va_pop_co_2015) == 'estimate'] <- 'estimate
_2015' 
va_pop_co_2015 <- va_pop_co_2015[, .(GEOID, estimate_2015, year)] 

va_pop_co_2016 <- data.table::setDT(tidycensus::get_acs(geography = "county", 
variables = "B01001_001", state = "VA", year = 2016)) 
va_pop_co_2016[, year := "2016"] 
colnames(va_pop_co_2016)[colnames(va_pop_co_2016) == 'estimate'] <- 'estimate
_2016' 
va_pop_co_2016 <- va_pop_co_2016[, .(GEOID, estimate_2016, year)] 

Combine	Population	Counts	for	Each	Year	
colnames(ocs_snap_cnt_fips_by_year) <- c("GEOID", "year", "N")   

ocs_snap_cnt_fips_by_year[, GEOID := paste0("51", GEOID)]   

ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2013, 
by = c("GEOID", "year"), all.x = T)   

ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2014, 
by = c("GEOID", "year"), all.x = T)   



ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2015, 
by = c("GEOID", "year"), all.x = T)   

ocs_snap_cnt_fips_by_year <- merge(ocs_snap_cnt_fips_by_year, va_pop_co_2016, 
by = c("GEOID", "year"), all.x = T)   

ocs_snap_cnt_fips_by_year[, pop_est := gsub("NA", "", paste0(estimate_2013, e
stimate_2014, estimate_2015, estimate_2016))] 

Create	Index	“Idx”	as	the	count	of	those	with	
both	SNAP	and	OCS	in	a	county	for	a	particular	
year	
ocs_snap_cnt_fips_by_year <- ocs_snap_cnt_fips_by_year[, .(GEOID, year, snap_
plus_ocs = N, pop_est, idx = N/as.numeric(pop_est))]   

# print table   

kable(ocs_snap_cnt_fips_by_year[1:4]) %>% kable_styling() %>% scroll_box(widt
h = "910px") 

Create	the	Nutritional	-	Behavioral	Index	Map	
Download the Geography 

va_geo <- tidycensus::get_acs(geography = "county", variables = "B01001_001", 
state = "VA", year = 2016, geometry = TRUE) 

Chose year to map and create a standardized index from 0 to 1 

Combine the data and geography and create the map 

va_geo_idx_2013 <- merge(va_geo, idx_2013, by = "GEOID") 

ggplot(data = va_geo_idx_2013) + 
geom_sf(aes(fill = idx_z)) + 
ggtitle("Nutrition plus Behavioral Assistance", subtitle = "(scaled per capit
a per county)") + 
theme(panel.grid.major = element_line(color = gray(0.5), linetype = "dashed", 
size = 0.5), panel.background = element_rect(fill = "aliceblue")) 



 

 


